Power MOSFET

-12 V, -4.3 A, μCOOL™ Dual P-Channel, 2x2 mm, WDFN package

Features

- WDFN 2x2 mm Package with Exposed Drain Pads for Excellent Thermal Conduction
- Lowest RDS(on) in 2x2 mm Package
- Footprint Same as SC-88 Package
- Low Profile (<0.8 mm) for Easy Fit in Thin Environments
- Bidirectional Current Flow with Common Source Configuration
- These are Pb-Free Devices

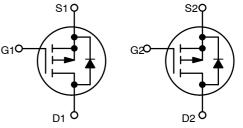
Applications

- Optimized for Battery and Load Management Applications in Portable Equipment
- Li Ion Battery Charging and Protection Circuits
- Dual High Side Load Switch

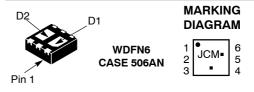
MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise noted)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	-12	V
Gate-to-Source Voltage)		V_{GS}	±8.0	V
Continuous Drain	Steady	$T_J = 25^{\circ}C$	I _D	-3.5	Α
Current (Note 1)	State	T _J = 85°C		-2.5	
	t ≤ 5 s	$T_J = 25^{\circ}C$		-4.3	
Power Dissipation (Note 1)	Steady State T _{.1} = 25°C		P _D	1.5	W
	t ≤ 5 s			2.3	
Continuous Drain		$T_J = 25^{\circ}C$	I _D	-2.4	Α
Current (Note 2)	Steady	T _J = 85°C		-1.7	
Power Dissipation (Note 2)	State	T _J = 25°C	P _D	0.7	W
Pulsed Drain Current	t _p =	10 μs	I _{DM}	-20	Α
Operating Junction and Storage Temperature			T _J , T _{STG}	–55 to 150	°C
Source Current (Body Diode) (Note 2)			I _S	-1.5	Α
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


- 1. Surface Mounted on FR4 Board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces).
- 2. Surface Mounted on FR4 Board using the minimum recommended pad size of 30 mm², 2 oz. Cu.

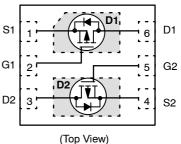
ON Semiconductor®


http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} TYP	I _D MAX
	60 mΩ @ -4.5 V	-3.0 A
	85 mΩ @ -2.5 V	-3.0 A
10.1/	110 mΩ @ –1.8 V	-0.7 A
-12 V	140 mΩ @ –1.5 V	-0.5 A
	190 mΩ @ –1.3 V	-0.2 A
	230 mΩ @ -1.2 V	-0.2 A

P-CHANNEL MOSFET

P-CHANNEL MOSFET


= Specific Device Code

= Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

PIN CONNECTIONS

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
SINGLE OPERATION (SELF-HEATED)			
Junction-to-Ambient - Steady State (Note 3)	$R_{ hetaJA}$	83	
Junction-to-Ambient - Steady State Min Pad (Note 4)	$R_{ hetaJA}$	177	°C/W
Junction-to-Ambient – t ≤ 5 s (Note 3)	$R_{ heta JA}$	54	
DUAL OPERATION (EQUALLY HEATED)			
Junction-to-Ambient - Steady State (Note 3)	$R_{ hetaJA}$	58	
Junction-to-Ambient - Steady State Min Pad (Note 4)	$R_{ heta JA}$	133	°C/W
Junction-to-Ambient - t ≤ 5 s (Note 3)	$R_{ hetaJA}$	40	

Surface Mounted on FR4 Board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces).
 Surface Mounted on FR4 Board using the minimum recommended pad size (30 mm², 2 oz Cu).

MOSEET ELECTRICAL CHARACTERISTICS (T. - 25°C unless otherwise noted)

Parameter	Symbol	Test Conditions		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = -25$	50 μΑ	-12			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	I_D = -250 μ A, Ref to 25°C			-7.0		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}		T _J = 25°C			-1.0	μΑ
		$V_{DS} = -12 \text{ V}, V_{GS} = 0 \text{ V}$	T _J = 85°C			-10	
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm$	8.0 V			±100	nA
ON CHARACTERISTICS (Note 5)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = -2$	50 μA	-0.35	-0.6	-0.8	V
Gate Threshold Temperature Coefficient	V _{GS(TH)} /T _J				2.4		mV/°C
Drain-to-Source On-Resistance	Source On–Resistance $R_{DS(on)}$ $V_{GS} = -4.5$, $I_D = -3.0$ A		3.0 A		60	90	mΩ
		$V_{GS} = -2.5$, $I_D = -3.0$ A $V_{GS} = -1.8$, $I_D = -0.7$ A $V_{GS} = -1.5$, $I_D = -0.5$ A			85	120	
					110	150	
					140	200	
		$V_{GS} = -1.3, I_D = -0.0$	0.2 A		190		
		$V_{GS} = -1.2, I_D = -0.2$	$V_{GS} = -1.2$, $I_D = -0.2$ A		230		
Forward Transconductance	9 _{FS}	$V_{DS} = -10 \text{ V}, I_D = -3.0 \text{ A}$			6.0		S
CHARGES, CAPACITANCES AND GA	TE RESISTAN	CE					
Input Capacitance	C _{ISS}				467		pF
Output Capacitance	C _{OSS}	V_{GS} = 0 V, f = 1.0 MHz, V_{DS} = -6.0 V			125		
Reverse Transfer Capacitance	C _{RSS}				79		
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = -4.5 \text{ V}, V_{DS} = -6.0 \text{ V},$ $I_{D} = -3.0 \text{ A}$			5.5	8.0	nC
Threshold Gate Charge	Q _{G(TH)}				0.3		1
Gate-to-Source Charge	Q _{GS}				0.8		1
Gate-to-Drain Charge	Q_{GD}				1.5		1

^{5.} Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.

Gate Resistance

 R_{G}

12.2

Ω

^{6.} Switching characteristics are independent of operating junction temperatures.

$\textbf{MOSFET ELECTRICAL CHARACTERISTICS} \ (T_J = 25^{\circ}\text{C unless otherwise noted})$

Parameter	Symbol	Test Conditions		Min	Тур	Max	Unit
SWITCHING CHARACTERISTICS (Note 6)							
Turn-On Delay Time	t _{d(ON)}				6.6		ns
Rise Time	t _r	$V_{GS} = -4.5 \text{ V}, V_{DD} = -6.0 \text{ V},$ $I_{D} = -3.0 \text{ A}, R_{G} = 2.0 \Omega$			12.3		
Turn-Off Delay Time	t _{d(OFF)}				14		
Fall Time	t _f				16.2		
DRAIN-SOURCE DIODE CHARACTE	DRAIN-SOURCE DIODE CHARACTERISTICS						
Forward Recovery Voltage	V_{SD}	$V_{GS} = 0 \text{ V}, I_S = -1.0 \text{ A}$ $T_J = 25^{\circ}\text{C}$ $T_J = 85^{\circ}\text{C}$			-0.7	-1.0	V
					-0.65		
Reverse Recovery Time	t _{RR}				23	45	ns
Charge Time	t _a	V_{GS} = 0 V, d_{ISD}/d_t = 100 A/ μ s, I_S = -1.0 A			8.0		
Discharge Time	t _b				15		
Reverse Recovery Time	Q_{RR}				10	20	nC

ORDERING INFORMATION

Device	Package	Shipping [†]
NTLJD2104PTBG	WDFN6 (Pb-Free)	3000 / Tape & Reel
NTLJD2104PTAG	WDFN6 (Pb-Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{5.} Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
6. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

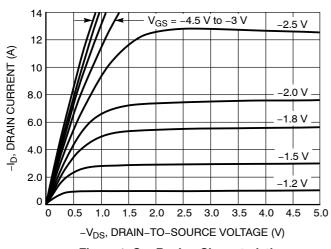


Figure 1. On-Region Characteristics

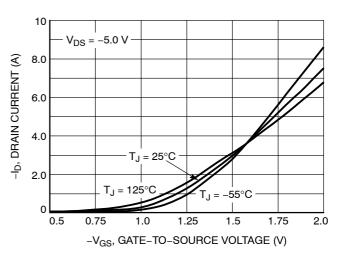


Figure 2. Transfer Characteristics

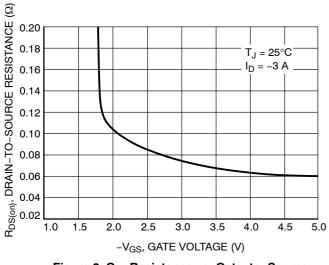


Figure 3. On-Resistance vs. Gate-to-Source Voltage

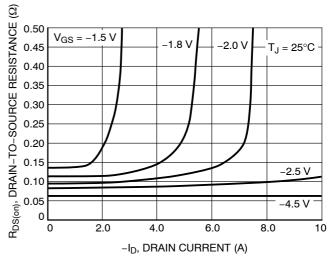


Figure 4. On-Resistance vs. Drain Current and Gate Voltage

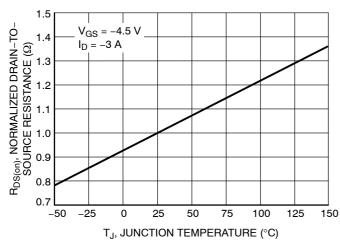


Figure 5. On–Resistance Variation with Temperature

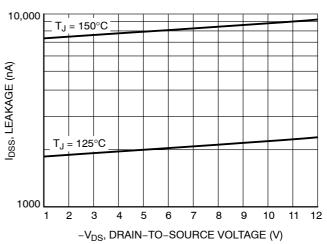


Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS

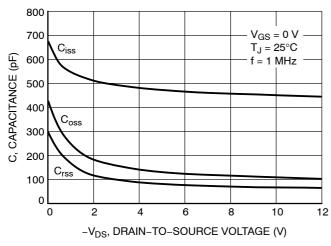


Figure 7. Capacitance Variation

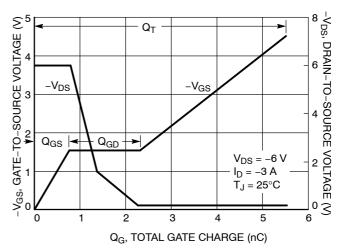


Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

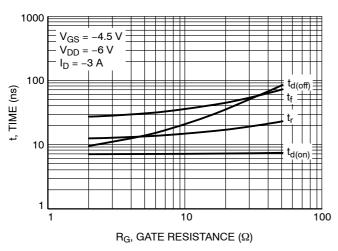


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

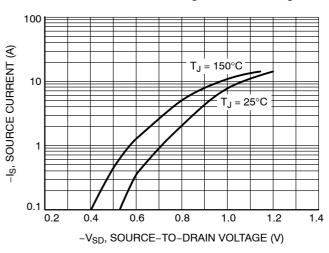


Figure 10. Diode Forward Voltage vs. Current

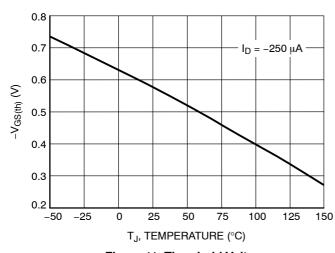


Figure 11. Threshold Voltage

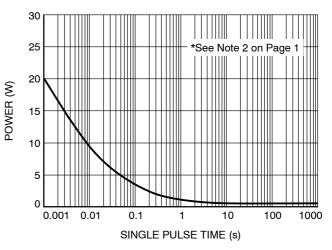


Figure 12. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS

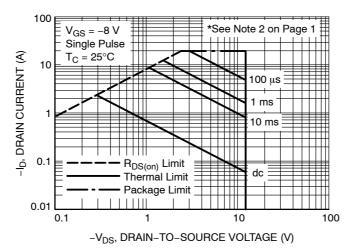
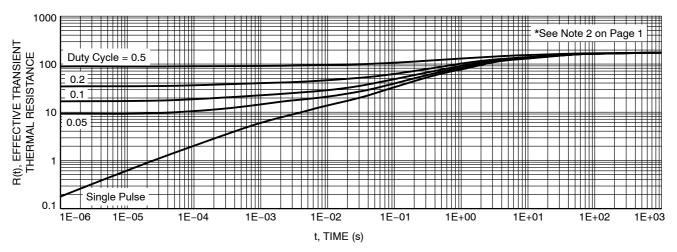
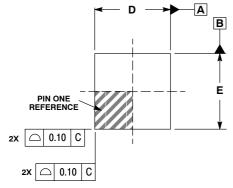
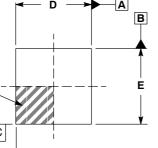
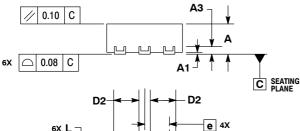
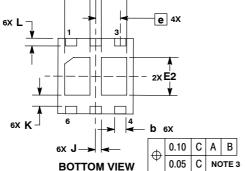


Figure 13. Maximum Rated Forward Biased Safe Operating Area

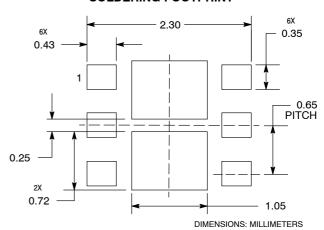




Figure 14. FET Thermal Response


PACKAGE DIMENSIONS


WDFN6 2x2

CASE 506AN-01 **ISSUE C**



NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- ASME 114.3M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
 DIMENSION 6 APPLIES TO PLATED
 TERMINAL AND IS MEASURED BETWEEN
 0.15 AND 0.20mm FROM TERMINAL.
- COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

	MILLIMETERS				
DIM	MIN	MAX			
Α	0.70	0.80			
A1	0.00	0.05			
A3	0.20	REF			
b	0.25	0.35			
D	2.00 BSC				
D2	0.57	0.77			
E	2.00 BSC				
E2	0.90	1.10			
е	0.65 BSC				
K	0.25 REF				
L	0.20 0.30				
J	0.15 REF				

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

 μ Cool is a trademark of Semiconductor Components Industries, LLC (SCILLC).

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative